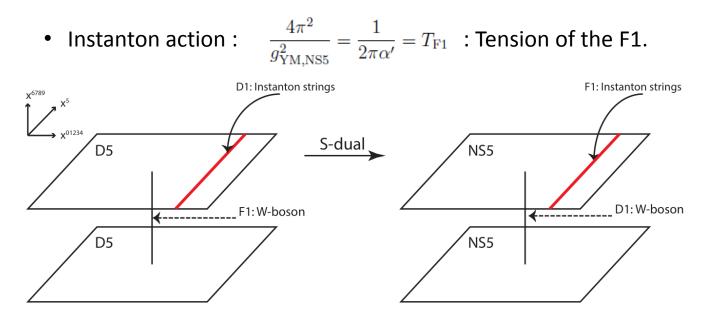
Little strings and T-duality

Jungmin Kim (Seoul National University)

January 28, 2015

Talk based on [JK., Seok Kim, Kimyeong Lee] in progress.

Outline


- 6d N=(1,1) Little strings
 - NS5-branes in IIB string theory in 10d flat space
 - Supersymmetric index of 6d N=(1,1) Little strings on R4 X T2
 - 2d N=(4,4) ADHM GLSM for N=(1,1) little strings
- 6d N=(2,0) Little strings
 - NS5-branes in IIA string theory in 10d flat space
 - T-duality between N=(1,1) and N=(2,0) LSTs
 - 2d N=(0,4) \hat{A}_{N-1} quiver gauge theory for N=(2,0) little strings
- T-duality
 - T-duality between rank N theories
 - T-duality between rank 1 theories

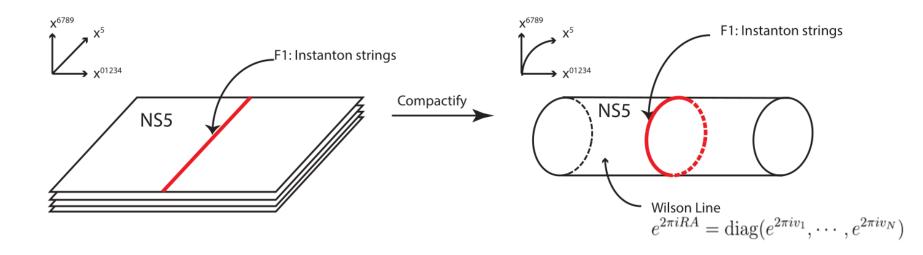
6d N= (1,1) Little string theory

- NS5-branes in IIB string theory in 10d flat space
 - World-volume theory : 6d N=(1,1) Maximally supersymmetric Yang-Mills.
 - NS5-branes : S-dual of "D5-branes" with the gauge coupling

$$g_{\rm YM,D5}^2 = \frac{1}{T_{\rm D5}(2\pi\alpha')^2} = (2\pi)^3 \alpha' g_s \xrightarrow{\rm S-dual} g_{\rm YM,NS5}^2 = \frac{1}{T_{\rm NS5}(2\pi\alpha')^2 g_s} = (2\pi)^3 \alpha'$$

- BPS Degrees of freedom
 - In Coulomb branch , D1-branes : W-bosons
 - Fundamental strings form BPS bound state on NS5s' : Instanton strings

6d N= (1,1) Little string theory


- Little string theory limit
 - The gauge coupling of the NS5-branes : gs independent
 - $g_s \to 0, \ \alpha' \to \text{finite}, \ E \gtrsim 1/\sqrt{\alpha'}$ limit
 - The gravitational modes are decoupled
 - The perturbative field theory description is totally broken.
 - At this energy scale, Strongly coupled 6d non-gravitational string theory
 "6d N=(1,1) Little string theory"
 - Little strings : Fundamental strings bound to IIB NS5-branes

6d N= (1,1) Little string theory on $R^{1,4} \times S^1$

- 6d N=(1,1) Little string theory on circle
 - Motivation : T-dual to 6d N=(2,0) Little string theory of IIA NS5-branes.
 - T-Duality : KK-momentum \checkmark Winding number , with $R \rightarrow lpha'/R$
 - \exists Wilson line along the circle : $e^{2\pi i RA} = \text{diag}(e^{2\pi i v_1}, \cdots, e^{2\pi i v_N})$
 - KK-Momenta along the circle are fractionalized :

$$P_5 - eA_5 = n - \frac{v_i - v_j}{R_{\text{IIB}}} \quad , \quad (n \in \mathbb{Z})$$

• Form the charge space of \hat{A}_{N-1} root space.

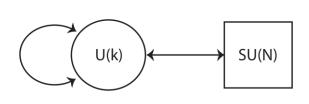
6d N= (1,1) Little string theory on $R^4 \times T^2$

• Supersymmetric Index for 6d N=(1,1) LST on R⁴ X T²

$$Z(v_i, \epsilon_{\pm}, q_1, q_2) = \operatorname{Tr}\left[(-1)^F w^W q^{H_L} \bar{q}^{H_R} e^{2\pi i v_i \Pi_i} e^{2\pi i \epsilon_- (2J_{1L})} e^{2\pi i m (2J_{2L})} e^{2\pi i \epsilon_+ (2J_{1R} + 2J_{2R})}\right]$$

$$\epsilon_{\pm} = \frac{\epsilon_1 \pm \epsilon_2}{2}$$

- Global symmetry : $SO(4)_1 \times U(1) \times SO(4)_2$
 - Isometry on NS5-branes' worldvolume : $SO(4)_1 \times U(1) = SU(2)_1^L \times SU(2)_1^R \times U(1)$
 - Isometry on NS5-branes' transverse direction : $SO(4)_2 = SU(2)_2^L \times SU(2)_2^R$
 - w : Winding number of little Strings
 - v_i : Wilson line expectation value \longrightarrow "counting fractional momentum"
- Result


$$Z_{\text{IIB}}(v_{i}, \epsilon_{\pm}, m; q, w) = Z_{\text{pert}}^{\text{IIB}}(v_{i}, \epsilon_{\pm}, m; q) Z_{\text{inst}}^{\text{IIB}}(v_{i}, \epsilon_{\pm}, m; q, w)$$
$$Z_{\text{pert}}^{\text{IIB}}(v_{i}, \epsilon_{\pm}, m; q) = PE \left[\frac{1}{2} I_{+} \sum_{i \neq j}^{N} e^{2\pi i (v_{i} - v_{j})} + \left(I_{-} + (N - 1)I_{+} + I_{+} \sum_{i \neq j}^{N} e^{2\pi i (v_{i} - v_{j})} \right) \frac{q}{1 - q}$$
$$Z_{\text{inst}}^{\text{IIB}}(v_{i}, \epsilon_{\pm}, m; q, w) = \sum_{k=0}^{\infty} w^{k} Z_{k}(v_{i}, \epsilon_{\pm}, m; q)$$

- $Z_k(v_i, \epsilon_{\pm}, m; q)$: the elliptic genus of k instanton strings

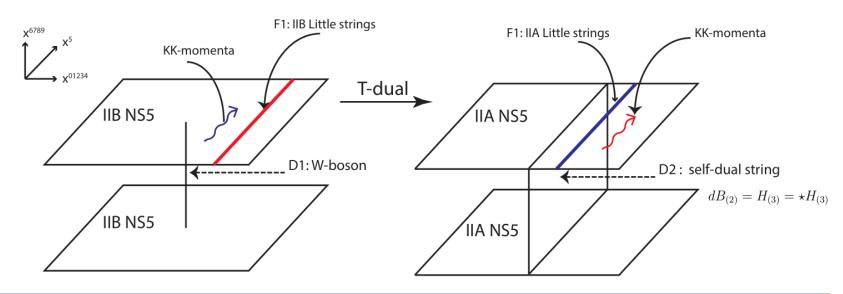
$$PE[f(\epsilon_{\pm}, m, v_i, q, w)] = \exp\left[\sum_{k=1}^{\infty} \frac{1}{k} f(k\epsilon_{\pm}, km, kv_i, q^k, w^k)\right]$$
$$I_{\pm}(\epsilon_{\pm}, m) = \frac{\sinh\frac{2\pi i(m+\epsilon_{\pm})}{2} \sinh\frac{2\pi i(m-\epsilon_{\pm})}{2}}{\sinh\frac{2\pi i\epsilon_1}{2} \sinh\frac{2\pi i\epsilon_2}{2}}$$

6d N= (1,1) Little string theory on $R^4 \times T^2$

- Gauge theory description of IIB Little strings
 - Worldsheet description :
 - 2d NLSM with the target space of the instanton moduli space
 - As UV-theory : 2d U(k) N=(4,4) ADHM gauged linear sigma model

$\mathcal{N} = (4, 4)$	$\mathcal{N} = (0, 4)$	Fields	U(k)	U(N)
Vector	Vector	$A_{\mu}, \bar{\lambda}_{-}^{A\dot{\alpha}}$	adj	1
	Twisted Hyper	$\varphi_{aA}, \ \bar{\lambda}_{a+}^{\dot{\alpha}}$	adj	1
Hyper1	Hyper	$a_{\alpha\dot{\beta}}, \lambda^A_{\alpha+}$	adj	1
	Fermi	λ_{aeta-}	adj	1
Hyper2	Hyper	$q_{\dot{\alpha}}, \psi^A_+$	Ō	
	Fermi	ψ_{a-}	Ō	

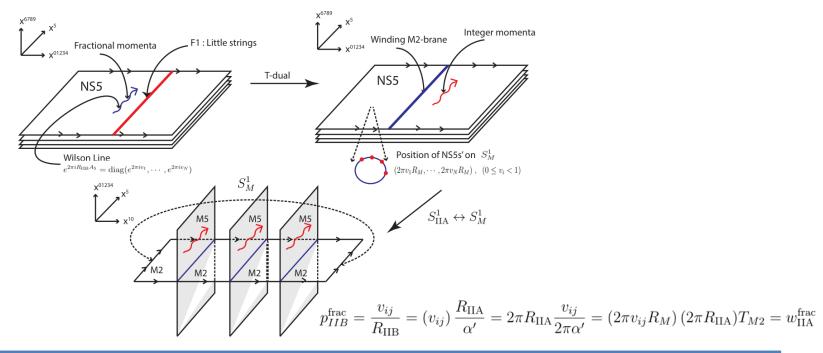
The elliptic genus of k IIB little strings

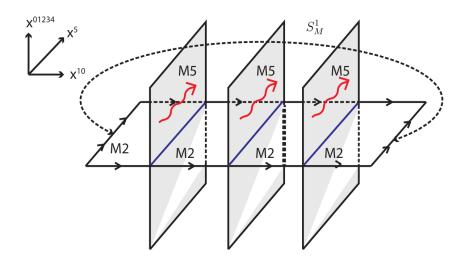

$$Z_{k}(v_{i},\epsilon_{\pm},m;q_{2}) = \sum_{Y:\sum_{i}|Y_{i}|=k}\prod_{i,j=1}^{N}\prod_{s\in Y_{i}}\frac{\theta_{1}(q;E_{ij}+m-\epsilon_{-})\theta_{1}(q;E_{ij}-m-\epsilon_{-})}{\theta_{1}(q;E_{ij}-\epsilon_{1})\theta_{1}(q;E_{ij}+\epsilon_{2})}$$

$$E_{ij} = v_i - v_j - \epsilon_1 h_i(s) + \epsilon_2 v_j(s)$$

Computed by Jeffrey-Kirwan residues
 [F.Benini, R.Eager, K. Hori, and Y. Tachikawa]

6d N= (2,0) Little string theory


- NS5-branes in IIA string theory
 - World-volume theory :
 - \longrightarrow 6d N=(2,0) Non-abelian tensor multiplet with one compact scalar on S^1_M \exists Mass scale of $1/R_M$
 - − In Tensor branch, Self-dual strings \rightarrow D2-branes
 - NS5 F1 BPS bound states
 - $g_s \to 0$, $\alpha' \to \text{finite}$, $E \gtrsim 1/\sqrt{\alpha'}$ limit.
 - 6d N=(2,0) Little string theory T-dual to 6d N=(1,1) Little string theory
 - Little strings : M2-branes wrapping on S_M^1


6d N= (2,0) Little string theory on $R^4 \times T^2$

- T-duality between 6d N=(1,1) and N=(2,0) Little strings.
 - Wilson line in 6d N=(1,1) \longrightarrow Separation of NS5s' along S_M^1
 - Winding # of IIB Little strings \longrightarrow KK-momentum along S_{IIA}^1
 - - ~ Winding M2-branes wrapping on $S_{IIA}^1 \times I_M(v_{i,i+1})$

- Exchange $S_{\text{IIA}}^1 \leftrightarrow S_M^1$
 - Obtain M5-branes' circle-compactified abelian tensor branch.
 - Fractional IIA Little strings _____ Self-dual strings with \hat{A}_{N-1} type.

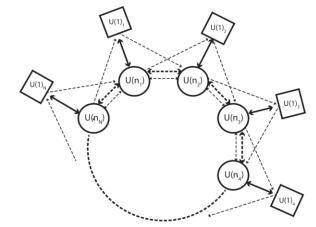
6d N= (2,0) Little string theory on $R^4 \times T^2$

- Supersymmetric Index for 6d N=(2,0) LST on R⁴ X T² ۲
 - Result

$$Z_{\text{IIA}}(v_i, \epsilon_{\pm}, m; q', w') = Z_{\text{KK}}^{\text{IIA}}(\epsilon_{\pm}, m; q') Z_{M2}^{\text{IIA}}(v_a, \epsilon_{\pm}, m; q', w')$$

- Field theory KK-momentum : $Z_{\rm KK}^{\rm IIA}(\epsilon_{\pm}, m; q') = PE\left[NI_{-}(\epsilon_{\pm}, m)\frac{q'}{1-q'}\right]$ $I_{\pm}(\epsilon_{\pm}, m) = \frac{\sinh \frac{2\pi i(m+\epsilon_{\pm})}{2} \sinh \frac{2\pi i(m-\epsilon_{\pm})}{2}}{\sinh \frac{2\pi i(m-\epsilon_{\pm})}{2} \sinh \frac{2\pi i(m-\epsilon_{\pm})}{2}}$
- Fractional IIA Little strings M2-branes' contribution : _

$$Z_{M2}^{\text{IIA}}(v_a, \epsilon_{\pm}, m; q', w') = \sum_{n_i=0}^{\infty} e^{2\pi i \sum_{a=1}^{N} n_i v_{a,a+1}} Z_{M2}^{(n_1, \dots, n_N)}(\epsilon_{\pm}, m; q')$$


6d N= (1,1) Little string theory on $R^4 \times T^2$

- Fractional IIA Little strings
 - Self-dual strings on the circle compactified abelian tensor branch
 - Self-dual strings charged under \hat{A}_{N-1}

[B.Haghighat, A. Iqbal, C. Kozcaz, G. Lockhart, C. Vafa] $\longrightarrow A_{N-1}$ Case

- 2d N=(0,4) circular \hat{A}_{N-1} quiver gauge theory

Multiplet	Fields	$U(n_i)$	$U(1)_i$
Vector	$A_{\mu}, \bar{\lambda}_{-}^{A\dot{lpha}}$	adj	1
Hyper	$q_{\dot{\alpha}}, \ \psi^A_+$	\Box_i	\Box_i
Hyper	$a_{\alpha\dot{\beta}}, \ \lambda^A_{\alpha+}$	adj	1
Twisted Hyper	$\varphi_{aA}, \ \bar{\lambda}_{a+}^{\dot{\alpha}}$	$(\Box_i, \bar{\Box}_{i+1})$	1
Fermi	$\lambda_{a\beta-}$	$(\Box_i, \bar{\Box}_{i+1})$	1
Fermi	ψ_{1a-}	\Box_i	\square_{i-1}
Fermi	ψ_{2a-}	\Box_i	\Box_{i+1}

 $\epsilon_{-})$

- The Elliptic genus of IIA Little strings

$$Z_{M2}^{\text{IIA}}(v_{a},\epsilon_{\pm},m;q',w') = \sum_{n_{i}=0}^{\infty} e^{2\pi i \sum_{a=1}^{N} n_{i}v_{a,a+1}} Z_{M2}^{(n_{1},\dots,n_{N})}(\epsilon_{\pm},m;q') e^{-2\pi i (v_{N+1})} = e^{-2\pi i v_{1}}w'$$

$$Z_{M2}^{(n_{1},\dots,n_{N})}(\epsilon_{\pm},m;q') = \sum_{\substack{\{Y_{1},\dots,Y_{N}\}; |Y_{i}|=n_{i}}} \prod_{a=1}^{N} \prod_{s\in Y_{i}} \frac{\theta_{1}(q';E_{ij}^{(a,a+1)}-m+\epsilon_{-})\theta_{1}(q';E_{ij}^{(a,a-1)}+m+\epsilon_{-})}{\theta_{1}(q';E_{ij}^{(a,a)}+\epsilon_{1})\theta_{1}(q';E_{ij}^{(a,a)}-\epsilon_{2})}$$

$$E_{ij}^{(a,b)} = (Y_{a,i}-j)\epsilon_{1} - (Y_{b,i}^{T}-i)\epsilon_{2}$$

T-duality in Rank N Little string theories

• Rank N Little strings

- 6d N=(1,1) Little string theory

$$Z_{\text{IIB}}(v_i, \epsilon_{\pm}, m; q, w) = Z_{\text{pert}}^{\text{IIB}}(v_i, \epsilon_{\pm}, m; q) Z_{\text{inst}}^{\text{IIB}}(v_i, \epsilon_{\pm}, m; q, w)$$
$$Z_{\text{pert}}^{\text{IIB}}(v_i, \epsilon_{\pm}, m; q) = PE \left[\frac{1}{2} I_+ \sum_{i \neq i}^{N} e^{2\pi i (v_i - v_j)} + \left(I_- + (N-1)I_+ + I_+ \sum_{i \neq j}^{N} e^{2\pi i (v_i - v_j)} \right) \frac{q}{1-q} \right]$$
$$Z_{\text{inst}}^{\text{IIB}}(v_i, \epsilon_{\pm}, m; q, w) = \sum_{k=0}^{\infty} w^k Z_k(v_i, \epsilon_{\pm}, m; q)$$

- 6d N=(2,0) Little string theory

$$Z_{\text{IIA}}(v_{i}, \epsilon_{\pm}, m; q', w') = Z_{\text{KK}}^{\text{IIA}}(\epsilon_{\pm}, m; q') Z_{M2}^{\text{IIA}}(v_{a}, \epsilon_{\pm}, m; q', w')$$
$$Z_{\text{KK}}^{\text{IIA}}(\epsilon_{\pm}, m; q') = PE \left[NI_{-}(\epsilon_{\pm}, m) \frac{q'}{1 - q'} \right]$$
$$Z_{M2}^{\text{IIA}}(v_{a}, \epsilon_{\pm}, m; q', w') = \sum_{\substack{n_{i} = 0 \\ n_{i} = 0}}^{\infty} e^{2\pi i \sum_{a=1}^{N} n_{i} v_{a,a+1}} Z_{M2}^{(n_{1}, \dots, n_{N})}(\epsilon_{\pm}, m; q')$$
$$e^{-2\pi i (v_{N+1})} = e^{-2\pi i v_{1}} w'$$

- T-duality
 - T-duality $q \leftrightarrow w', w \leftrightarrow q'$:
 - Checked to highly nontrivial order of $q, w, e^{2\pi i v_i}$ in SU(2) gauge theory, [in progress]

T-duality for Rank 1 Little string theories

• Rank 1 Little strings

6d N=(1,1) Little string theory

$$Z_{U(1)\text{IIB}}(\epsilon_{\pm}, m; q, w) = PE\left[I_{-}(\epsilon_{\pm}, m)\frac{q}{1-q}\right] \exp\left[\sum_{n=1}^{\infty} \frac{1}{n} w^{n} \sum_{\substack{ad=n\\a,d\in\mathbb{Z}}} \sum_{b(\text{mod }d)} Z_{1-\text{inst}}\left(a\epsilon_{\pm}, am; \frac{a\tau+b}{d}\right)\right]_{q=e^{2\pi i\tau}}$$
$$Z_{U(1)\text{ pert}}^{\text{IIB}}(\epsilon_{\pm}, m; q) = PE\left[I_{-}(\epsilon_{\pm}, m)\frac{q}{1-q}\right] \qquad Z_{1-\text{inst}}(\epsilon_{\pm}, m; q) = \frac{\theta_{1}\left(q; m+\epsilon_{-}\right)\theta_{1}\left(q; m-\epsilon_{-}\right)}{\theta_{1}\left(q; \epsilon_{1}\right)\theta_{1}\left(q; \epsilon_{2}\right)}$$

- 6d N=(2,0) Little string theory

$$Z_{U(1)\mathrm{IIA}}(\epsilon_{\pm}, m; q', w') = PE\left[I_{-}(\epsilon_{\pm}, m)\frac{q'}{1-q'}\right] \exp\left[\sum_{n=1}^{\infty} \frac{1}{n} w'^{n} \sum_{\substack{ad=n\\a,d\in\mathbb{Z}}} \sum_{b(\mathrm{mod}\ d)} Z_{\mathrm{M2}}\left(a\epsilon_{\pm}, am; \frac{a\tau'+b}{d}\right)\right]_{q'=e^{2\pi i\tau'}}$$

$$Z_{U(1) \text{ KK}}^{\text{IIA}}(\epsilon_{\pm}, m; q') = PE\left[I_{-}(\epsilon_{\pm}, m)\frac{q'}{1-q'}\right] \qquad Z_{\text{M2}}(\epsilon_{\pm}, m; q') = \frac{\theta_{1}(q'; m + \epsilon_{-})\theta_{1}(q'; m - \epsilon_{-})}{\theta_{1}(q'; \epsilon_{1})\theta_{1}(q'; \epsilon_{2})}$$

- T-duality
 - T-duality $q \leftrightarrow w', w \leftrightarrow q'$:
 - Checked to highly nontrivial order of $\ q, \ w$
 - Self-T-duality $q \leftrightarrow w, q' \leftrightarrow w'$ and Extension of T-duality $q \leftrightarrow q', w \leftrightarrow w'$
 - 2d N=(0,4) quiver gauge theory for rank 1 IIA Little strings Enhanced N=(4,4)
 - GLSM for IIA Little strings = GLSM for IIB Little strings
 - T-duality is extended to Sp(4,Z) duality group , [T.J.Hollowood, A. Iqbal, C. Vafa]

Summary

- Type II Little string theories share T-duality exchanging KK-momentum and Winding strings with all fractional quantities.
- There are useful 2d gauge theory descriptions of Little strings' world-sheet.
- For the rank 1 little string theories,
 T-duality is extended to larger duality symmetry group.